Improving Web Spam Classifiers Using Link Structure (S)
نویسندگان
چکیده
Web spam has been recognized as one of the top challenges in the search engine industry [14]. A lot of recent work has addressed the problem of detecting or demoting web spam, including both content spam [16, 12] and link spam [22, 13]. However, any time an anti-spam technique is developed, spammers will design new spamming techniques to confuse search engine ranking methods and spam detection mechanisms. Machine learning-based classification methods can quickly adapt to newly developed spam techniques. We describe a two-stage approach to improve the performance of common classifiers. We first implement a classifier to catch a large portion of spam in our data. Then we design several heuristics to decide if a node should be relabeled based on the preclassified result and knowledge about the neighborhood. Our experimental results show visible improvements with respect to precision and recall.
منابع مشابه
Web Link Spam Identification Inspired by Artificial Immune System and the Impact of Tpp-fca Feature Selection on Spam Classification
Search engines are the doorsteps for retrieving required information from the web. Web spam is a bad method for improving the ranking and visibility of the web pages in search engine results. This paper addresses the problem of the link spam classification through the features of the web sites. Link related features retrieved from the website are used to discriminate the spam and non-spam sites...
متن کاملUsing Rank Propagation and Probabilistic Counting for Link-Based Spam Detection
This paper describes a technique for automating the detection of Web link spam, that is, groups of pages that are linked together with the sole purpose of obtaining an undeservedly high score in search engines. The problem of Web spam is widespread and difficult to solve, mostly due to the large size of web collections that makes many algorithms unfeasible in practice. For spam detection we app...
متن کاملLink-Based Characterization and Detection of Web Spam
We perform a statistical analysis of a large collection of Web pages, focusing on spam detection. We study several metrics such as degree correlations, number of neighbors, rank propagation through links, TrustRank and others to build several automatic web spam classifiers. This paper presents a study of the performance of each of these classifiers alone, as well as their combined performance. ...
متن کاملA Large-Scale Study of Link Spam Detection by Graph Algorithms (S)
Link spam refers to attempts to promote the ranking of spammers’ web sites by deceiving link-based ranking algorithms in search engines. Spammers often create densely connected link structure of sites so called “link farm”. In this paper, we study the overall structure and distribution of link farms in a large-scale graph of the Japanese Web with 5.8 million sites and 283 million links. To exam...
متن کاملLink-Based Similarity Search to Fight Web Spam
We investigate the usability of similarity search in fighting Web spam based on the assumption that an unknown spam page is more similar to certain known spam pages than to honest pages. In order to be successful, search engine spam never appears in isolation: we observe link farms and alliances for the sole purpose of search engine ranking manipulation. The artificial nature and strong inside ...
متن کامل